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ABSTRACT

The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re ~ 10® for the plane-
tary boundary layer and Re ~ 10! for the Sun’s interior) are too large to allow a direct numerical simulation
(DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points
N ~ Re®* exceeds the computational capability of today’s supercomputers.

Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since
the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail man-
ageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophys-
ical case, to general circulation models. In the volume average approach, one carries out a large eddy
simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated
theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES +SGS
approach has considerable computational requirements. Even if this prevents (for the time being) a LES +SGS
model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an “experimental
tool” to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such
a methodology has been successfully adopted in studies of the convective planetary boundary layer.

Experience with the LES+SGS approach from different fields has shown that its reliability depends on the
healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most
widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large
resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation,
and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence
(e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in
turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES
results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anisotropy, and
stable stratification (gravity waves).

In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy
of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are
simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation
of these models into the presently available LES codes should begin with the SM, to be followed by the AM
and finally by the CM.

Subject headings: convection — methods: analytical — methods: numerical — turbulence

A numerical procedure without a turbulence model stands in the same relation to a complete calculation as an ox
does to a bull—PETER BRADSHAW

1. INTRODUCTION

Turbulence is not a property of a fluid but a property of a
fluid in motion. Thus, its maintenance requires continuous
nourishment, a source of external energy which, fed at the
largest scales, is transferred to all other scales by the nonlinear
interactions. The latter, by definition, conserve energy and so
the power € fed into the system at the largest scales is found
unaltered at the dissipation scale [; where molecular processes
dissipate it into heat. It must be stressed that the amount of
energy dissipated is not determined by the small scales; the
latter determine only the scales at which dissipation occurs.
Thus, I; depends on only two quantities: the input power €
(ergs g~ ! s~ !) that characterizes the source, and kinematic
viscosity v (cm? s~ ') that characterizes the sink. From dimen-
sional arguments it follows that

I, = (e 14, 1)

Since € is determined by the largest scales which have charac-
teristic velocities U and length scales L, one of the most basic
relations in turbulence theory dictates that (Batchelor 1971)

e=U?L. 2

Insertion of equation (2) into equation (1) yields the ratio of the
largest scales L to the dissipation scale J,

L =Re¥*, Re= vL R 3)
I8 v

where Re is the Reynolds number. The large values of L and
the small values of v that characterize geophysical (Wyngaard
1992) and astrophysical settings (Spruit, Nordlund, & Title
1990) militate to create huge Reynolds numbers, Re ~ 108 for
the Earth’s boundary layer and Re ~ 10*# for the Sun’s turbu-
lent convection. By contrast, in many laboratory and engineer-
ing turbulent flows, Re ~ 10* Herring (1987) has also pointed
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out that for a fixed Rayleigh number, the Reynolds number R
(=ulAv™1, where 1 is the Taylor microscale 4 and u is the rms
turbulent velocity) decreases with the Prandtl number as
¢ ; in the Sun, ¢ ~ 107 1% (Massaguer 1990). Since turbu-
lence is three-dimensional, the number of spatial grid points N
thus grows as

Ny~ Re* . 4)
If we employ R, we have
N, ~R3%7. ®)

In the case of solar convection, a full three-dimensional simula-
tion would require ~ 103° grid points, while in the case of the
planetary boundary layer one would need 10'® grid points.
These numbers must be contrasted with today’s super-
computers that can handle at most 10° grid points.

These relations highlight what is perhaps the most dis-
tinguishing feature of turbulence, the richness of the dynamical
scales involved. How to describe all the strongly and nonlin-
early interacting scales has been the major goal of turbulence
modeling.

The plan of the paper is as follows: in § 2 we discuss the
general spirit and limitations behind large eddy simulation
(LES), direct numerical simulation (DNS), and ensemble
average techniques. In § 3 we discuss the probiem of deriving
the Reynolds stresses and convective fluxes and cite some well-
known models. In § 4 we discuss the specific case of turbulent
convection in stellar cases, and we present a series of physical
arguments that argue against the use of the simple “ turbulent
viscosity ” approximation for the Reynolds stresses. In § 5 we
present the complete model (CM): a set of differential equations
that govern the Reynolds stresses, the convective flux, the tem-
perature variance as well as the dissipation rates of turbulent
kinetic energy and temperature variance. In § 6 we present the
algebraic models (AMs): a class of algebraic Reynolds stress
models which constitute a considerable simplification of the
AM since the two primary quantities, the Reynolds stresses
and the convective fluxes, are given in algebraic form. We
present four AMs of decreasing complexity, the last model
being entirely algebraic. In order to quantify the effects of
several of the physical ingredients of the models, in § 7 we
present a set of Simplified Models (SMs), the simplest of which
is the Smagorinsky-Lilly model. In § 8 we present some general
conclusions. In Appendices A—C, we present a detailed deriva-
tion of the CM. In Appendix D we present a new formulation
for the third-order moments to be used in subgrid scale (SGS)
modeling. In Appendix E we present the numerical values of
the constants entering the models.

2. DNS, LES, AND ENSEMBLE AVERAGE

2.1. Direct Numerical Simulations

This approach, which has met with considerable success in
engineering problems, consists of solving the basic Navier-
Stokes and energy equations using a Direct Numerical Simula-
tion (DNS) technique whereby one resolves numerically all the
dynamical scales from L to the dissipation length scale I,.
Because of equation (4), the DNS method is limited to low
values of Re (Corrsin 1951; Rogallo 1981; Rogallo & Moin
1984; Reynolds 1990).

2.2. Ensemble—Time Average

This method was proposed last century by O. Reynolds. The
Navier-Stokes equations of motion are first averaged over a
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infinite ensemble of realizations so as to obtain the equations
for the ensemble mean fields. If one considers time averages,
the time considered must be larger than the timescale of turbu-
lence but smaller than the timescale of the mean motion (Rodi
1984). If v, represents the total velocity field, U; the mean field,
and u, the fluctuating part, v; = U; + u;, with i, =0, the
averaging process leads to the following equation for U;:

0 0 op @ au;
—U,;+U. —U;=——+—I|v——uu].
a T i, T Tag Yo, <v o, “'“l) ©
An analogous calculation gives the equation for the mean tem-
perature T (y is the thermometric conductivity)
o T _a( 3T
ot T iox, o \Fax, )
Equations (6) and (7) for the mean variables U, and T look like
the original equations describing the laminar flow: turbulence

enters through the nonlinear interactions that give rise to the
new functions

M

ww; and 0 ®)

which are called Reynolds stresses and turbulent heat fluxes.
Until one devises a model for these new functions, equations
(6)—(7) are “not closed ” and thus cannot be solved.

2.3. Large Eddy Simulations

The scales of a highly turbulent flow can be separated into
two broad categories with quite different characteristics: large
eddies contain most of the energy, do most of the transporting,
are diffusive, anisotropic, long-lived, inhomogeneous, ordered,
and dependent on the boundaries and thus difficult to model
analytically. On the other hand, small eddies are dissipative,
isotropic, short-lived, homogeneous, random, and universal,
and thus more amenable to theoretical modeling (Schumann,
1991). The conceptual basis of the LES approach is therefore
that the largest scales, in view of their complexity, should not
be modeled theoretically, but rather explicitly numerically
simulated, while the smaller scales that cannot be numerically
resolved should be modeled via a SGS model, for which one
can use any of the Reynolds stress models discussed in this
paper (for the foundations of the LES method, see Voke &
Collins 1983; Markatos 1987; Yoshizawa 1987; Grotzbach
1987; Reynolds 1990; for a spectral LES, see Metais & Lesieur
1992).

Historically, the LES method was first applied by Deardorff
(1970) to study plane channel flow using the SGS model of
Smagorinsky (1963) which we shall discuss below. Moin &
Kim (1982) reexamined channel flow; Grotzbach & Schumann
(1979) studied temperature fluctuations and heat transfer in
channel flows; Biringen & Reynolds (1981) studied free-shear
turbulent boundary layer while Antonopolous-Domis (1981a,
b) used LES to study the characteristics of a passive scalar in
homogeneous turbulence.

The widest application of LES (second only to engineering)
has occurred in geophysics, specifically in the treatment of the
strongly convective boundary layer through the work of
Wyngaard (1984), Moeng (1984, 1986), Moeng & Wyngaard
(1989), Mason & Thomson (1987), Mason (1989), Mason &
Derbyshire (1990), Mason & Thomson (1992), Nieuwstadt &
de Valk (1987), Schmidt & Schumann (1989), Sykes & Henn
(1989), Nieuwstadt (1991), and Mason (1994). The results of the
four major LES codes have recently been compared and found
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to be in excellent agreement (Nieuwstadt et al. 1991). For an
update of LES techniques applied to engineering, laboratory,
and geophysical flows, see Galperin (1992). Some of the main
properties of the strongly convective planetary boundary layer
(PBL) may be of interest (Zeman 1981; Wyngaard 1992):
extent of the convective layer, d ~ 1 km; pressure scale height
H, ~ 7 km; Reynolds number Re ~ 10®; Taylor microscale
A ~ 107%d (A% = w?/e), which marks roughly the small-scale
end of the Kolmogorov spectrum; length scale 1 and velocity v
of the flux carrying eddies I ~ d, v ~ | ms™!; dissipation scale
I, ~ Men)/*p~1 ~ 10754, dissipation rate of kinetic energy
e~v3l~10cm?s™ 3

It may be of interest to remark that in the stellar case not
only is the value of Re several orders of magnitude larger
(~10'%), but the ratio d/H, is of O(1), while in the PBL is
0(10~1). Thus, in principle, the thin-layer approximation is
satisfied in the PBL but not in stellar interiors, as discussed in
some detail in Canuto (1993, hereafter Paper II), where such an
approximation was avoided.

Mathematically, a LES procedure begins with the intro-
duction of a volume average through a filter operation
whereby all scales larger than a given size A are fully resolved
while all the scales smaller than A have to be modeled. Con-
sider the Navier-Stokes equations for an inviscid, incompress-
ible fluid of total velocity field v;,

F 0 0 o2 d
o oo = — L 4y 0, =0. (9

The process of filtering all scales smaller than a given size A is
accomplished via a filter operation whereby given a variable
Jf{x), one defines a filtered f through

fx) = JGA(x [x)f(x)dx", (10)

where G,(x| x) is the filter function with a characteristic length
scale A. Several filters have been proposed in the literature:
Gaussian, box, sharp, etc. For a specific form of the filter func-
tion, see equation (6) of Marcus (1986). Applying equation (10)
to equation (9), one obtains
2 v; + 2 v;v; = % +v 2z v
Pox; Y ax oxt
As Ferziger (1976) has remarked, one is now faced with the
“archetypical problem of turbulence,” the need to specify an
average of a product, v;v;. As a first step one rewrites equation
(11a)in the form
) d _ _ op 0
—vivj=—~+arij, (11b)

(11a)

where
Tij=5i5'_7;' (llc)

In this way, the form of equation (11b) is the same as the
original equation (9), except that the viscous stress is now
replaced by the stress 7;;. It is instructive to analyze 7;; in more
detail. In analogy with the Reynolds method discussed above,
one writes

b=+, (12)

where a bar indicates the filtered, fully resolved large-scale
velocity field, and u; represents the subgrid, unresolved velocity
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field. Thus,

—_— Tij

where the first two terms are called the Leonard terms.
Leonard (1974) proposed that since the filtered velocity is a
fairly smooth function, one can use a Taylor expansion to
obtain

>
©
QD
9

B,5; = B,0; + = =5 ;7 - (14a)

Analogously, Clark, Ferziger, & Reynolds (1976) suggested the
expression

— A% _ 3
ivj——avj@vi, (14b)
so that finally
A2 (05,\/ ov,
-t =+ ——— ). 14¢
AT (akaax,,) (140)

On the other hand, Bardina, Ferziger, & Reynolds (1980)
suggested to approximate the cross-terms, third and fourth
terms in equation (13), as follows:

W 0; + u;0; = 0;0; — ;05 , (15a)

S

so that

— Ty = U U+ D;0; — U; 05 . (15b)

In both equation (14¢) and equation (15b), the terms involv-
ing b are known, while the first term must be modeled.

3. REYNOLDS STRESSES

The first proposal to model equation (8) dates back to
Boussinesq (1877), who suggested that, in analogy with the
viscous stresses, the turbulent stresses be taken proportional to
the mean-velocity gradient, the constant of proportionality
being interpreted as an eddy or turbulent viscosity, v,. Specifi-
cally, the traceless Reynolds stress

b, =u;u; — 36,;€ (16a)

is modeled as follows:

b= —2v8;, (16b)
where
J 17
2 gy = T . -_— s,
S;; ox, U, + o, U; (16c)

Here e is the turbulent kinetic energy 4u;u; and §;; is the shear
of the mean and/or resolved scales. Substituting equation (16b)
into equation (6), we note that the presence of turbulence
renormalizes the kinematic viscosity, v —» v + v,. The problem
now is how to determine v,. The kinetic energy e in eq. (16a)
can be absorbed into the pressure gradient term in eq. (6).
While the renormalization of v is an appealing concept, it must
be stressed that contrary to the viscous case, where the kine-
matic viscosity v is a property of the fluid (irrespectively of its
state of motion), the turbulent viscosity v, is a property of the
fluid in motion and thus in principle unknown until the full
dynamical problem is solved. In addition, v, can hardly be
considered a constant. The shortcomings of equation (16a),
when applied to the Sun, will be discussed in § 4 below.
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Pursuing the analogy with nonturbulent flows, since the
kinematic viscosity is the product of an average velocity times
a mean free path, Prandtl (1925) was the first to suggest the
concept of “ mixing length” whereby

v,~vl, (16d)

where v is an rms turbulent velocity and /is a mixing length.

3.1. Zero-Equation Models

The first model for v is also due to Prandtl (1925) who
suggested that

v=1S, (16¢)
where S = (25;;5;)"/* is the mean shear. Thus
v, = I2S . (16f)

Equation (16f) is the Prandtl mixing-length model. Equations
(16a)—(16f) have become understandably very popular not only
because of their simplicity (they are categorized as zero-
equation models for there are no dynamical equations to be
solved) but also because of their successful application to
several types of flows (Schlichting 1969; Rodi 1984). However,
the specification of the mixing length remains a major problem
especially for flows that deviate from the shear layer types for
which the model was originally devised.

3.2. One-Equation Models

An improvement over the above description can be achieved
if one considers that since the bulk of the kinetic energy of a
turbulent flow is concentrated in the largest scales, a physically
meaningful scale can be taken to be proportional to ¢!/%. Thus,
a more complete parameterization of v, can be devised whereby
one writes

v,=c,et?l, (17a)

This is the Kolmogorov (1942)—Prandtl (1945) formula. Clearly,
one must now solve a dynamic equation for e (hence the name,
one-equation model). Such an equation is derived in Appendix
A (eq. [A26]). For the simpler case in which there are no
buoyancy forces, and using equation (16b), the resulting equa-
tion is
de Oe
P Ui—xi+Df(e)=v'S2_€' (17b)
The diffusion term D, is represented by a third-order
moment which must be modeled. For many years, it has been
customary to adopt the down-gradient or diffusion approx-
imation discussed in Canuto (1992, hereafter Paper Ij, § 5.
Since, however, this term is not relevant to the present dis-
cussion, we shall not discuss it any further. The physical inter-
pretation of equation (17b) is that the time variation of the
turbulent kinetic energy is governed by advection and diffusion
(the last two terms on the left-hand side), while the first term on
the right-hand side represents the source of turbulent energy,
specifically, the energy extracted from the mean flow by the
interaction between the Reynolds stresses and the shear. The
last term in equation (17b) represents the dissipation (sink)
of that energy and it occurs at the scales /;, as discussed
previously.
To solve equation (17b), one needs to model € (Appendix C).
Since € represents the rate of dissipation of turbulent kinetic
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energy, we write
e~er . (17¢)
Since
T, ~le 2, (17d)
one has (Batchelor 1971)
3/2
e~ (17¢)

It has been generally felt that due to the difficulties encoun-
tered in defining the dissipation length scale J,, which in prin-
ciple need not be the same as the / in equation (17a), the
advantages of the one-equation model over the zero-equation
model are not overwhelming. The past tendency has been
either to work with the zero-equation model or to adopt the
two-equation models. The conclusion has recently been chal-
lenged by Belcher et al. (1991) who suggest that in the case of
inhomogeneous turbulence (e.g., turbulence over a wavy
surface) the one-equation model, with a properly prescribed
mixing length, is superior to a two-equation model
(presumably because in such case, the already heavily param-
eterized equation for € would require further changes for which
one has no guidance).

3.3. Two-Equation Models

This approach consists of considering, in addition to the
equation for the kinetic energy (17b), an additional equation
for the dissipation €, which, because of equation (17¢), is equiv-
alent to an equation for the length scale /.. The resulting model
is known as the K-¢ model (kinetic energy-dissipation model,
Rodi 1984). The dynamical equation for € can be derived from
the basic Navier-Stokes equations (Davidov 1961; Speziale
1991): however, its full form contains a variety of terms that
cannot be easily interpreted and are thus difficult to param-
eterize. A great deal of work over many years has gone into the
determination of such an equation, which is discussed in
Appendix C. Here, we quote the most common form (we leave
out buoyancy and employ the so-called down-gradient or dif-
fusion approximation for the third-order moment eu;; see
Papers I and 1I for a further discussion, as well as Appendix
D):

Oe e 0 de € €?
Eiv, E o (L), fr-c, s,
ot T ox;  Ox; (K' ax,.) tlay Ca e (182)

where P stands for the production term
P=—b;S;=v5. (18b)
The model is completed by the addition of the two relations

e2
V=, K= o by, (18¢)
where o, is the turbulent Prandt] number usually taken to be
constant.

It is fair to say that the K-¢ model, equations (16a), (17b),
and (18), has been perhaps the most successful model in dealing
with a variety of turbulence problems (Rodi 1984; Speziale
1991; Lang & Shih 1991).

3.4. The Complete Reynolds Stress Model

In a way, the K-¢ model is the best one can do under the
assumption that the Reynolds stresses have the form of equa-
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tion (16a). We have already mentioned that equation (16b)
yields incorrect results when applied to the Sun, see equations
(21g)—(21h) below. However, historically, Keller & Friedmann
(1924) were the first to point out that there is actually no need
to postulate equation (16b) since one can derive the exact
dynamic equations for the stresses (eq. [8]) directly from the
Navier-Stokes equations. Interestingly enough, however,
Keller & Friedmann did not derive such equations which
appeared only 20 yr later (Chou 1945). Today, the most
advanced turbulence models employ this approach which is
known as second-order closure model (SOC). The last 40 yr of
work in this field have led to considerable progress, and the
SOC models have achieved considerable accuracy (Launder,
Reece, & Rodi 1975; Lumley 1978; Speziale 1991; Shih &
Lumley 1985; Zeman & Lumley 1976, Lumley & Mansfield
1984 ; Lang & Shih 1991; Papers I and II).

The total number of differential equations governing the
turbulent quantities is of course much larger, since

u;u;: six equations, u;6: three equations ,
8%: one equation, ¢, €,: two equations . (19)

In what follows, we first derive the complete SGS model that
includes shear, buoyancy, anisotropy, rotation, and stable
stratification. Second, we show that under reasonable assump-
tions, one can reduce the set of differential equations to a
model with only one or two differential equations while the
remaining are algebraic relations, thus making the model more
tractable. Third, we derive the Boussinesq-Kolmogorov-
Prandtl, BKP model (one-equation model), a two-equation
model, as well as the Smagorinsky model (zero-equation
model).

4. STELLAR TURBULENT CONVECTION

Historically, stellar turbulent convection has been treated
using all the three methods described above.

4.1. Direct Numerical Simulations
The method has been used by several authors (Cattaneo et
al. 1989, 1991; Malagoli, Cattaneo, & Brummel 1990; Toomre
et al. 1990) to study convection at relatively low Re ~ 1200. As
discussed earlier, however, in the case of fully developed solar
convection, Re ~ 1014,

4.2. Ensemble-Time Average

The simplest model corresponds to adopting the analog of
equation (16b) for the temperature field,

_ oT (0T
w-ln- (@) e

where y, = v,/a, plays the role of a “turbulent conductivity.”
Using equation (A26) in the stationary limit, with no mean
field, U, = 0 and with D + = 0, one obtains

€=y N2, (20b)
where N is the Brunt-Vaisala frequency (« is the volume expan-
sion coefficient):
veZ-E) e
Next, using equations (17¢) and (18c), one obtains
e~IN? y ~IN, (20d)
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so that the convective flux, F, = ¢, pw8 can be written as

aT oT 312
F,~ (ga)‘/ZP[— —+ (5) J : (200)
ad.

which is the well-known expression provided by the mixing
length theory (MLT, Bohm-Vitense 1958). A complete SOC
model has been recently developed by Canuto (1992, 1993) and
by Xiong (1985, 1986) who has also linked the turbulence
model to a stellar structure code (Unno, Kondo, & Xiong
1985; Unno & Kondo 1989).

4.3. Large Eddy Simulations

In astrophysical turbulence, the LES techniques have not yet
been used as extensively as in geophysics but interesting results
are becoming available. Marcus (1986) has discussed the conse-
quences of neglecting the contribution of the SGS as well as
that of mimicking them via the “numerical viscosity” that
appears in finite difference schemes. He has shown that the
latter type of viscosity fails to represent the real turbulent vis-
cosity because it draws energy preferentially from scales of size
L rather than from scales of order A and thus violates the
general principle of an LES, namely a SGS model must leave
the largest scales undisturbed while draining energy from
scales of order A. He has further shown that the “numerical
viscosity ” actually describes a viscous laminar flow rather than
an almost inviscid, turbulent flow, as one need consider (see
also Marcus, Press & Teukolsky, 1983).

The following is the simplest SGS model:

b= —2,S;, (21a)

— oT oT
B=—y| (L) |, 21b
“ Xt[axi <axi>ad:| (210)
% =v,6, ', @,=constant . (21c)

Neglecting the whole left-hand side of equation (17b),
Oe
U,-—x—>0 Die)—0, (21d)

which implies no transport of the small scales by the large
scales and no diffusion of the turbulent kinetic energy (a local
model for convection), one obtains that production equals
dissipation

€=1vS52%. (21e)

Further employing equation (17e) for €, and equation (17a) for
v,, one finally obtains assuming ! ~ I, ~ A,

v, = (C,A)’S, (21f)

which is the Smagorinsky model (1963) (a complete derivation is
given below).

This SGS model has been used by Sofia & Chan (1984),
Marcus (1986), Chan & Sofia (1986, 1989), Hossain & Mullan
(1991), Fox, Sofia, & Chan (1991), Fox, Theobald, & Sofia
(1991), and Xie & Toomre (1991, 1993); these authors treat
compressible turbulence but the physical content of their SGS
model is the same, see Erlebacher et al. 1992). By contrast,
Nordlund (1982), Stein & Nordlund (1989), Stein, Nordlund, &
Kuhn (1989), Glatzmaier (1984; 1985a, b; 1987), Gilman &
Miller (1986), and Atroshchenko et al. (1989) have used con-
stant eddy viscosity and/or hyperviscosity models (for a recent
suggestion how to compute C, in eq. [21f]; see Germano
1992).
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4.4. Critique of the SGS Model (21)

The question naturally arises: is the SGS model (eq. [21]) a
trustworthy description of turbulence in the presence of con-
vection rather than shear?

a. Model (21) was originally designed to describe shear-
generated rather than convection-generated turbulence (which
is the case of stellar interiors). An illustration of the short-
coming of the physical content of equation (21a) in dealing
with convection in an ensemble average mode comes from
considering that in spherical coordinates equation (21a) yields

(lg)

In the case of the sun, 8Q/00 > 0 in the northern hemisphere
(N) and <0 in southern hemisphere (S). Thus, equation (21g)
implies that

Uiy <O (N), Hyu,>0(S), (21h)

while observational data indicate the opposite behavior
(Rudiger 1989; Pulkkinen et al. 1993).

b. Equation (21a) represents the first term in a Taylor series
in the parameter t/T, where 7 is the turbulence timescale and T
is the mean flow typical timescale. This can be seen by writing
equation (21a) as

b; v, T .
— o~ — )~ = . 21
U~ 2 (TS~ 2 (TS, (21i)

where v, is given by equation (18¢c) and © ~ e/e ~ l/e!/2. There
is no a priori reason why /T be small, especially when one
considers that the smallest of the largest scales and the largest
of the unresolved (SGS) scales may actually have t ~ T, giving
rise to a resonance, which is known to alter the Kolmogorov
spectrum (Tchen 1953; Hinze 1975). As recently discussed by
Taulbee (1992) and Gatski & Speziale (1993), nonperturbative
derivations of b;; do in fact exhibit terms of much higher order
in (¢/T), up to (z/T)?, in Taulbee’s case.

¢. Equation (21a) requires that the principal axes of the
tensors b;; (representing turbulence) and S;; (representing the
mean flow) be aligned: this is true only for the case of pure
strain but not for flows with mean vorticity. For three-
dimensional flows in general, the measured flow distribution
can be predicted only by choosing different viscosities for each
stress component (Markatos 1987). Indeed, a complete deriva-
tion of equation (21a) indicates the presence of nonisotropic
terms which break the “alignment assumption” and which
ultimately are responsible for the extra terms discussed in (b)
above. In other words, in lieu of equation (21a), one has
(Taulbee 1992; Gatski & Speziale 1993)

bij ~ v, Si; + aby Sy; + chywy + -+, (210)

where 2w,; = U, ; — U, ;is the mean vorticity.

d. Equations (21a, b) imply that the Reynolds stress has
contributions only from the shear and that the convective flux
has contributions only from the temperature gradient. This is
not correct, however. In principle,

b;; ~ Y. (shear terms + buoyancy terms)”,

n

oT "
u6~y (a + shear terms) , (21m)

i

Vol. 428

where the summation begins with n = 1. At the lowest order,
equations (21¢)—(21f) become

e=v,S%1—R,), v,=(C,A*S1—Rp)Y> (21n)

where R is the flux Richardson number, the ratio of the energy
(more precisely the power) generated by buoyancy to that gen-
erated by shear (for the definition of 4, see after eq. [27¢]:

_ w0
buSy’

Since in unstably stratified regimes, R, < 0, model (21f) under-
estimates the true turbulent viscosity, whereas in a stably strati-
fied regime (like the overshooting region), R, > 0, equation
(21f) overestimates the true value of the turbulent viscosity.

e. Equation (21b) contradicts a well-known phenomenon
observed in laboratory, atmospheric, and numerically simu-
lated turbulence, namely that stably stratified flows exhibit
both a positive temperature gradient and a positive convective
flux:

R, (210)

0T/6z>0, W8>0, (1p)

a phenomenon known as countergradient (Priestly & Swin-
bank 1947; Deardorff 1966; Finger & Schmidt 1986; Schu-
mann 1987; Canuto et al. 1993). It will be shown later (see also
Canuto 1992, eq. [80]) that one of the terms that contributes to
the countergradient phenomenon and which is missing in
equation (21b) is 62, the temperature variance.

Jf. Equation (21b) is not valid in stratified flows where the
presence of strong 6> fluctuations (random gravity waves)
forces the turbulent conductivity y, to become a tensor: this is
shown explicitly in § 6, equation (49a).

g. Equation (21c) is taken with a constant turbulent Prandtl
number o¢,. This contradicts experimental data (Webster 1964,
Istweire & Helland 1989) which show that in stably stratified
flows o, increases with increasing stability, indicating a more
efficient transport of momentum than of heat.

h. Equation (21f) is based upon equations (21d) and (21e).
Let us begin with the latter: it states that production equals
dissipation, that is, turbulence is assumed to be in a state of
local equilibrium; at each point in the flow, turbulent energy is
dissipated at the same rate at which is produced, whereas the
strong nonlocal nature of convection implies that turbulent
energy generated at one point in the flow may be dissipated
somewhere else (see, for example, Chan & Sofia 1989). The
assumption of locality is contained in equation (21d).

The assumption of locality can be expected to apply to flows
that are locally produced and locally dissipated. Shear turbu-
lence is such a flow whereas convective turbulence is not, its
most distinguishing feature being the high degree of non-
locality (Monin & Yaglom 1971-1975).

In summary, the premises under which the SGS model
(21a)—(21f) is expected to hold are satisfied much more in shear
turbulence than in convective turbulence. This conclusion is
hardly surprising since the physical ingredients of the model
were originally devised to describe shear rather than convec-
tive turbulence. Therefore, arguments (a)—(h) cast doubts as to
the reliability of such an SGS model as a trustworthy descrip-
tion of turbulent convection. On the other hand, the general
attitude has been to employ an “a posteriori” reasoning
whereby the SGS model (21a)—(21f) is judged valid because by
changing the values of the constants in it, the results do not
change much. We do not concur with these conclusions,
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because the reasons given in (a)—(h) demonstrate that the
physical content of the model is wanting in many respects,
because one cannot quantify the importance of physical effects
that the model does not include, because one should employ at
least two SGS models of different physical content to make
meaningful comparisons and because recent LES calculations
have demonstrated that small scales can no longer be viewed
as a pure drain of energy from the larger scales: they can in fact
play a dynamical role by backscattering some of their energy
to the larger scales, thus affecting the overall structure of the
PBL (Mason & Thomson 1992).

5. THE COMPLETE MODEL

Following Deardorff (1970, 1971), Herring (1987), and Sch-
midt & Schumann (1989), we assume that the SGS model for the
Reynolds stress and fluxes (eq. [8]) is given by a SOC model.
Using the Reynolds stress approach to treat the Navier-Stokes
equations (Papers I and II) and keeping buoyancy, shear, and
rotation, one can derive the equations satisfied by the Rey-
nolds stresses and the convective flux. We call (U;, T) the
resolved scales and (u;, 8) the unresolved scales of the velocity
and temperature fields. Also,

D 0 T3} N
D_t=a+U"6—xj’ b,-j=u,-uj—§e(5ij,
(22

1=
= g2 2 = U .
3—251, 4 =y

The derivation of the basic equations of the SGS model is
presented in Appendix A. The results are as follows.

Turbulent kinetic energy e:

g—j + De) = —b;S; + Au,0 — € +% Ci, (23)

where
Do) == (1 P p_u,) . (23b)

0x; \2
Temperature variance 0

DD—O:+Df(?)= —2ﬂ2—£+x%;i;—zeg+c", (24a)

where
D67 = 9 u, 0% . (24b)

0x;

Reynolds stresses b;;:

8
—eSy;—(1—aZy

D -
E bij + Df(bij) = _ZC:TP lb,'j + ﬂS Bij - 15

— (1 —a)Z; — II,{NL) + C;; — % 0;iCu» (25a)
where
o (1 _ —— _ _ 2 __
D(b;) = P (u,- it =3 8:;q%uy + 8y pu; + 85 pu; — 3 5U-puk>
(25b)
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Turbulent convective fluxes F, = ¢, p¢;, ¢; = u; 0:

Y 3
—u,-ujg — <1 ~3 oc3)S,-j¢j
J

5 . —
— (1 4 a3)Aij ¢;—fit, ¢+ (1 —y)h 6

D
D_t ¢i + Df(¢i) =

1 o?
— IT%NL) + = — &, .
N 4504055 6+C (26)
where

P R —
Df(d’i) = Ex_ (9 u; + 5ijpe) . (26b)

The functions D, represent “diffusion terms” and are given by
the third-order moments discussed in Appendix D.

Dissipation rates € and €,:

o im

(27a)

N | =

€o=

For the dissipation length scale /,, we take

l,=c ', YA=T(Fr,R,), c ,=const., (27b)

where
el/? A u,0
Fr = — _ Lt
r=an R=hs,
oT oT
N? = —ay; _—<‘”‘ =4p;. 27¢)
Ox; 0%,/ 24

Here Fr is the Froude number, R, is the flux Richardson
number, and N is the Brunt-Vaisala frequency (N2 > 0 for
unstable stratification and N? < 0 for stable stratification);
A= g;0, g; = (0, 0, g), where « is the volume expansion coeffi-
cient. A is the limit of | in the neutral and shearless case.

The function ' has been computed by Cheng & Canuto
(1993) with the result

R, <R,
IT=[t+aFr 31 +5pFr 4311732
3nfa=2A—1), b=0.121A—-14+3471*°; (27d)
R, > R,,:
I =[1+(4/57%)4 Fr 2]°,
c=5A"1 - 1). (27¢)

In both expressions A is defined as
A=1+(3"?/4Ko¥* R/ /R, — 1) 27f)

Cheng & Canuto (1993) have also shown how the expression
for ! does encompass the empirical expressions suggested by
Deardorff (1980) and Hunt et al. (1988).

The traceless tensors appearing in equations (23)-(27) are
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defined by dimensionless Reynolds stress tensor
2S,~~=Ui‘~+U~,i, 2(1),“=Ui’~_U-’;_, 1_ 2
J J J; J J J aij‘:_uiuj__ ijEe—lbij’ (303.)
B =24¢;+ ;¢ — %5:’1')% oy » € 3
T = Suby; + Siba — 26 Subu » (28) equation (29¢) becomes

Zi=bpoy+ bjk @y — (2 — o)1~ )™ l(ejkl b+ € b,

Ay = @y — (2 — Saa/A(1 — Sa3/4) ™ ;3

In equation (28), §;; is the shear, w;; is the vorticity, Q is the
angular velocity, and ¢;; is the totally antisymmetric tensor.
From equation (25a) we note that B;; represents a source of
turbulence (specifically of b;;) due to buoyancy, while Z;; and
Z;; represent “anisotropic production” of b;; via the aniso-
tropic interaction of the mean flow (S;, and w;) with the Rey-
nolds stress by. These terms are the ones that avoid the align-
ment problem discussed in item (c) of § 4.

The nonlinear quantities IT;{NL) and IT(NL) are given by
equations (A27b)—(A29), (A41)—(A42) of Appendix A. The non-
Boussinesq terms Cy, C;, and C;; are derived in Appendix B.
The third-order moments appearing on the left-hand sides of
equations (23)-(26), are discussed in Appendix D. Finally, in
Appendix E we present the expression of the functions f’s and
y’s and the values of the constants.

In summary, the complete model is composed of the differential
equations (23)—(26) and of relations (27).

Since it would not seem advisable to go from the Smago-
rinsky model to the complete model, we present a hierarchy of
simpler models so as to allow an orderly quantification of the
new features of the full model.

6. ALGEBRAIC MODELS

If one neglects the convective and diffusive terms, represent-
ed by the left-hand sides of equations (23)—(26), these equations
become algebraic and one can thus write the Reynolds stress
tensor b;; and the convective flux u; ;0 in a form that entails only
inversion of matrices. This model was used, for example, by
Launder (1975). Physically, this corresponds to assuming that
production P equals dissipation e, as is clear from equation
(23), which becomes

P=e, P=P,+P,, (29a)

where the buoyancy and shear production terms are defined by
Pb=lim, Py= —b;S;;. (29b)

However, a better approximation can be devised that, while
accounting for the possibility that locally P # e, still leads to
an algebraic model (AM) which of course can easily be reduced
to the previous case by taking P/e = 1. This approximation
was originally suggested by Rodi (1984) and has been used
extensively since then. We begin by considering equations
(A23) and (A26), which we write in compact form as

D __

Dt u;u; + D(u;u;) = RHS(A23) , (29c¢)
D
D ¢ + D/(e) = RHS(A26), (29d)

where RHS(A23) and RHS(A26) mean the right-hand sides of
equations (A23) and (A26), respectively. Introducing the

e Dr ay; e u; uj Dt + Dye)
[D Auuy) — u wu; D f(e):| = RHS(A23). (30b)

At this point, we employ Rodi’s (1984) approximation whereby
the diffusion of #;u; is assumed to be proportional to the diffu-
sion of e with a coefficient given by the ratio (w;u;/e) which is
not constant:

D (u;u) ~ (u;u;/e)D fe) (30¢)

so that we can neglect the term in last set of brackets in the
left-hand side of equation (30b). Furthermore, using equations
(29d), (A23), and (A26), we derive

D 1
eaa,-j+a,-j P_€+§Cii
*,.—1 8
= —2cfer, ‘a; — T eS;; + BsB; — (1 — a)Z;
—(1—a)Z;+C 6 iCa —ILANL). (31)

Taulbee (1992) has recently shown that Da;;/Dt = 0 holds true
only in the asymptotic case, namely, for large values of the
dimensionless parameter S > 1, where 7 is the characteristic
time of turbulence, t = 2e/e, and S is the shear. It is clear that
in many astrophysical settings of interest, for example in accre-
tion disks, such a relation is not necessarily satisfied. More-
over, since the presence of buoyancy must also be accounted
for, we extend Taulbee’s suggestion by writing

S5—8,=8(1-Rp)", (32a)

where the flux Richardson number is defined in equation (27c¢).

In order to encompass arbitrary values of ©S,, it is suggested
that one introduces the variable a;;/tS, and uses equation (C9)
to eliminate the variable 1. Using an approximation analogous
to equation (30c), equation (C9) becomes

1D

P 1
_1_+_Cii9
S Dt )e €

— @Sy = Dr S* +2(C, -1 —-2C,

(32b)
where we have neglected the difference in the two diffusion
terlrzst‘ us now consider equation (26). In this case, it has been

suggested (Gibson & Launder 1976) that the left-hand side be
taken as

D 1— i1 (De
Dt u9+Df(u0)—-2- i [_(E+Dfe>

Df?
+5 ( o+ Dfaz)}, (33a)
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which, upon using equations (23)—(24), becomes
D — I
Dr ;0 + Dy(u;6)= Bt 'u,6, (33b)

where, using equations (29) and (27a)
—oT 1 2 2
Py= —uy,0 —+-C° =—==]e 12 (33
] ut axi + 2 s Tg €e Co ee ( C)
we obtain
P 1 P,
B=——1+4+-¢€1C,; + co<——g -1+ Pe_l) ,  (33d)
€ 2 €
where we have introduced the Peclet number defined as
el/2 lf 5202\ 1
Pe = Cg 7 l€<¥ asz) . (336)

Substituting now equations (32b) with D(a;;/1S,)/Dt = 0 and
equation (33b) into the left-hand sides of equations (31) and
(26), we obtain the following,

6.1. AM1: Two-Equation Model
Reynolds stresses:
Ab;; = — l—sse'cS,-j + BstBy; — (1 — oy 1% — (1 — ayitZy;
+ —tI{NL) + «(C;; — $6,;C) » (34a)

where
2 T D
A=Ay + A4, —+-C; S—Ets*’ (34b)
1 T . _
§A0=T—c4+C€2—2, A4, =2-C, (34¢)

Convective fluxes:

2

orT _
3 ed; + bij>r — + (1 — y)4;16?

Aikm = —< 8xj

1 0% —
— ITYNL) + 3 v + ) e u;0 +1C,, (35a)
J

where

T 3 5
Ay = (;;fl + B)é,-k + <1 ~3 a3>rSik + (1 2 oz3>1A,.k .

(35b)
We may note several features of the general expressions (34a)

and (35a). First of all, the ratio /7, is not a constant unless one
deals with neutral stratification. Otherwise, the expression is

ri=1+h]N2[12, h= 0045 , (35¢)
p

where 6 = 0 for unstable stratification and 6 = 1 for stable
stratification. Since t = 2¢712] , we have

2 =1 4 2 N2t (35d)

TP
Equation (34a) shows that shear (S;) and buoyancy (B;)
contribute to the Reynolds stresses as well as anisotropic pro-
duction (Z and Z), the non-Boussinesq terms (C), and the non-
linear terms (A and IT) which become important in the stably
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stratified region. Equation (34a) exhibits the general structure
of equation (211). By the same token, equation (35a) shows that
buoyancy has contributions from not only the temperature
gradient but also by shear and by temperature fluctuations 62.

In conclusion, the AM1 model consists of equations (23),
(24), (27), (34), and (35). It is a two-equation model since there
are only two differential equations (e, %), while the remaining
turbulent variables are expressed algebraically.

6.2. AM2: One-Equation Model

In this model, we carry out a further simplification: we
change equation (24a) from prognostic to diagnostic by
neglecting the time derivative and the third-order moments.
Using equation (27a) and t = 2e/e, we obtain

- — 0T 1
6*=—1C Y u6——=¢* 3
7C, (u,@ax 3 ), (36a)
which, together with the first term of equation (B6), gives

— —oT (0T —
6 = —rC‘W,-H[——(—) ]=rC‘1ﬁiu,~0, 36b
* 0x; 0%/ aa * (360}

where (see eq. [27¢])

8T (T _1

Thus, equation (35a) simplifies to

i

_ 2 oT
Aik u,‘9 = —<§ eéij + bil')'t a_xj d TH?(NL)
+C+1(+)a—2_0 (37a)
1C; 2'cv xax?u,- R a

J
where the matrix A, is now given by

T _
Ay = <r—f1 + B)aik = Co (1 — 9,724 By
14

3
+ (1 ~3 a3>rS,-k + (1 — 2 a3>tAik . (37b)

Model AM2 is thus composed of equations (23), (27), (34), and
(37). It is a one-equation model.

6.3. AM3: One-Equation Model, Neglect of
Higher Order Terms

In this model, we further simplify the structure of the equa-
tions by neglecting the nonlinear contributions to the pressure
correlations; namely, we assume that

I(NL), IYNL)=0. (38)
Thus we obtain from equation (34a) the following,
Reynolds stresses:
Ab; = —F5 etS;;+ BstB; — (1 — a 1%,
—(1- “2)TZij + T(Cij - %51'1 Cw) (39

with A given by equations (34b)—(34c). By the same token, we
derive from equation (37a) the following.

Convective fluxes:
2

S 2 oT 1 0%
Apu, 6= —<§ eéij+bij>t a—xj+1C,~ +§r(v+x)5x—];u,-9 R
(40)
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with A4, given by equation (37b). Model AM3 is thus com-
posed of equations (23), (27), (39), and (40). 1t is a one-equation
linear model.

6.4. AM4: Zero-Equation Model

In this model, we change the only remaining differential
equation (eq. [23a]), from prognostic to diagnostic, thus
reducing the model to a zero-equation model since all turbu-
lent variables will now be given in algebraic form. Under these
assumptions, equation (23a) becomes the statement that pro-
duction equals dissipation:

€= —b;S;+ 4u0= —b;S;{1 - Ry). 41)

Thus model AM4 consists of equations (39), (40), and (41). It is
a completely algebraic model with no differential equations
(hence the name zero-equation model).

7. SIMPLIFIED MODELS

Clearly, all of the previous SGS models can easily be solved
numerically but not analytically. To illustrate some of the main
features, we shall present a class of simplified models (hence the
name SM) that can be worked out more explicitly provided
one neglects some of the terms in the expressions for b;; and
u; 8. Since such simplifications may not be fully justified, the
main purpose here is to fill the gap between the AM and the
well-known Smagorinsky-Lilly model.

7.1. SM1: Smagorinsky-Lilly Model

This model is recovered from the previous expressions if one
takes equations (39) and (40) to be of the form

b= —2v,8;, (42a)
w0 =yp, (42b)

which alone shows that such a model does not account for the
production of b;; due to buoyancy (B;), the anisotropic pro-
duction of b;; due to shear (Z;)), and the anisotropic production
of b;; due to vorticity (Z;;). At the level of the convective flux,
such a model neglects the anisotropic production due to the
interaction of b;; with the temperature gradient, the 6 fluctua-
tions, shear, and vorticity contributions (the last three terms
are part of A;; eq. [37b]). Since 7 = 2¢/e and € is given by
equation (27a), the expressions for v, and y, in equation (42)
acquire the familar forms

vo=c,el, y,=c el . (42¢)

Once the kinetic energy e is obtained from solving equation
(41), the final form for v, is

v, = (C,AS[1 + o, Y(O)Ri]Y?, (42d)
where

. N?
Co=cl*c¢', af0)=v, 1 ' =c,c;', Ri= ok (42¢)
Here, C, is the Smagorinsky constant, ¢,(0) is the turbulent
Prandtl number corresponding to neutral stratification, and Ri
is the Richardson number. We recall that with the present
definition of N2, equations (27¢) and (36c), we have

Unstable stratification:

N*>0, ,6>0, R <0; (43a)

Vol. 428
Stable stratification:
N*<0, u,6<0, R;>0. (43b)
In equations (42c), the constants are given by
c—i 1a=c*+C C (44a)
YU 15a’ 27 T T e e
4 -1
cng(f1+B) . (44b)

As for their numerical values, using the values given in
Appendix E, we obtain (F'/? = 0.8 and F = 0)

¢, = 0.096-0.112 . (44c)

Schumann (1991) adopts ¢, = 0.072, while Rodi (1984) suggests
¢, = 0.08. With the value f; = 7.5, we obtain

c,=0.178, (44d)

while Schumann (1991) uses the value of 0.172. Finally (with
¢, = 0.845, Appendix C),

0.54 < 0,0) < 0.63 (44e)
020 < C, <023. (44f)

This value of C, is very close to the original value first derived
by Lilly (1962, 1966, 1967).

7.2. SM2: Reynolds Stresses

The Smagorinsky-Lilly model does not account for any of
the four effects

¢*-fluctuations, t,#t, I#A, § 45)

ie, the influence of 62-fluctuations, the shortening of the
pressure-velocity correlation timescale, the effect of stratifi-
cation and shear on the dissipation length scale, and the
dynamic effects due to S,. Below, we present a set of models
that account for equation (45) while of course making other
approximations so as to make the models tractable.

Without any justification other than simplicity, we take

b= ~2v,8,;. 46)

The effect of 7, and S, contained in equations (34b)—(34c) gives
rise to an expression for v, different than equation (42c). In fact,
we now have

% 2

v,=c, e ®e), (47a)
where
2| N? IL.S\]!
q>1(e)s[1+b<g)+c( ;,2)} ., @m)
e e

b=8ctha ' ~4h, c=2a"1'%,, (47¢)

1 D DS

5 =X—=(1—R) s — =§—.
p=I—5(1=R)T'STI Ry, T=5"7_-. (47d)

Substituting equation (47a) into equation (41) and using equa-
tion (27a), we obtain the equation determining the kinematic
energy e, namely,

e(l.S)"? =c(1 — R)D(e) . (48a)

To solve this equation, one needs to know R, as a function of e
itself and this in turn requires a model for the convective flux.
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In fact,
_ Awf
 bySy

An alternative form for R, comes from using equation (41),
namely,

R, = —24,4,0(v, 8% 1. (48b)

Rl —R)™'= —le*1u0. (48¢)

We should also recall that [, itself is a function of e because of
equations (27b)—(27f). Once the kinetic energy e is known in
terms of the large-scale quantities, the turbulent viscosity v, is
computed from equation (47a).

7.3. Turbulent Convective Flux

The convective flux, which in principle is given by equation
(40), will be simplified by neglecting the anisotropy factor b;; on
the right-hand side as well as the influence of shear and vor-
ticity in equation (37b). Even so, the derivation of the expres-
sion for the convective flux is by no means simple due to the
presence of the 6 fluctuations which introduce the non-
diagonal term 4;f, in equation (37b). Application of matrix
algebra and in particular the Cayley-Hamilton theorem yields
the result

u:0 =148, (49a)
where the turbulent conductivity is now a tensor y;; given by
: 12 EINZIV]T
xy=c el 1 +d — [y + Ly + ALy Lyl ,
(49b)
with
12 NZ -1 12
L= cz[l + d(‘—l—l)] = AB;, (49¢c)
e e

2 2 -1 32 2
Aleto cz[l N d(’—%\’iﬂ R

where the constants are defined as follows

_ 3
d=4hf~4h=0b, f=fi(/i+B7', ca==(1—y)c,.
C*

(49€)

In equation (49b), the first bracket is due to the difference
between 7, and 7, while the second bracket is due to the
presence of 62 fluctuations. After some algebra, we derive the
expression needed to compute the flux Richardson number,
namely,

hiu;0 = c eI N*®e) (50a)
where
1 —c,l2e IN?¢

Dofe) = ¢ Tl N7’ (50b)

=1+ d(@) , ¢y =c,(1 — A2BAN"% . (50c)

We recall that the presence of ¢, is due to the 62 fluctuations,
while ¢ is due to the fact that in general T, # t. The remaining
variables are defined as follows:

Br=B;B;, A*=A4;, N?*=1p;. (50d)
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In laboratory settings, where the temperature gradient typi-
cally has only one component,

f22% = N*. (50€)

On the other hand, in a SGS model, equation (50e) is no longer
true since f; has all three components different from zero.
Using equations (42a) and (42c), we finally obtain the expres-
sion for R as a function of the kinetic energy e, namely,

R, = —o; {(0)D,(e)®; (NS 2. (51a)

Equation (51a) is now substituted into equation (48a) with the
result

o c,[®@(e) + 6, HONZS ?Dy(e)] . (51b)
At this point, one must use equations (27b)—(27f) for I, in
general is a function of e. Once that is done, the solution of
equation (51b) finally yields the desired relation

e=¢e(N,S), (51¢)

and so all the SGS variables are now known in terms of the
large-scale variables, as desired.

In summary, SM2 is an algebraic model given by the follow-
ing relations

b= —2v8;, (52a)
v, = Ae'/?S, (52b)
S,=c,c.'Iro,, {52¢)

where I" is a function of both shear and buoyancy given by
equations (27d)—(27f); @, is given by equation (47b) and it
accounts for the possibility that 7, # 7. Similarly,

A48 =g, N?, (53a)

where N2 is defined in equation (27¢) and
%= Ae'’ Sy, (53b)
Sy =c,c]'TD,, (52c)

where @, is given by equations (50b)—(50c) and it accounts for
the 6* fluctuations and t, # 7. Finally, the kinetic energy e is
obtained by solving equation (51b).

7.4. SM3: No Stratification, the Effect of £ Alone

Suppose we treat a case with no stratification, in which case
Ri — 0 and @, — 1. Equation (51b) then yields

1/2
5 = O+ TR - (542)
where
15 .5 _, DS
=— , T=87%—. 54
p=c Dt (54b)
Since we want to study the effect of X, we take
IL=c7, I=A, T=1. (55a)
Substitution of equation (54) into equation (47a) yields
v, = (C,AYS¥,(2), (55b)
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where
¥(Z) = ([1 + p?T2]2 4+ uZ) 3. (55¢)

The interesting new feature is the appearance of the dynamical
variable . We notice that for positive X, equation (55b)
implies a less dissipative model since

v(Z) < v(0) . (55d)

This result is in contrast with a recent work by Yoshizawa
(1989), who has derived

Y. () = (1 + 0.64%)*, (55¢)
which implies that for positive
V{(Z) > v(0) (55f)

and thus a more dissipative model. It must be noted, however,
that preliminary LES calculations show that the presence of
may be important only in unsteady flows.

7.5. SM4: No Stratification, Effect of Shear on the
Smagorinsky Constant

In this case we take = = 0, but use I, = ¢, 'AT". For N> -0,
equations (27d)—(27f) give

I'=(1 +pSh}) %2, p=(2r23'2)"'Ko*?R,, 6,0). (56a)

Substituting equation (56a) into equation (51b), we obtain

X}+3x—-(m—-3Jx+1=0, (56b)
x =pSh?, m=cpcH)? (56¢)

so that
v = (C.A)?S, (56d)

where
C.=C(1 +x)32. (56¢)

Solving equation (56b), we obtain the values in Table 1.
There are no real solutions for larger values of p. For
example, for the last value of p and Ko = 1.6, we have

R, c(0) =04, (56f)
045 < C/C, < 0.63. (56g)

Thus, the effective Smagorinsky constant is reduced to about
half Lilly’s original value. Since C, = 0.2, it follows that

C,=01, (56h)
which is indeed the value that Deardorff (1970) found was
necessary to fit channel flow data. We can therefore conclude
that the physical reason for the lowering of the Smagorinsky
constant is the effect of shear. Let us further note that for
0(0) = 0.72 (Yakhot & Orszag 1986), equation (56f) yields
R, = 0.55 which is a value frequently used.

TABLE 1

EFFECT OF SHEAR ON THE
SMAGORINSKY CONSTANT

10%p &jc,
20,00, 0.33-0.75
24,0, 0.45-0.63

Vol. 428

7.6. SM5: Stable and Unstable Stratification,
The Effect of 6* and t,

In this case we want to study the effect of 62 and 7, separa-
tely from that of I'; thus, we take

=1, lLL=c¢'A, ¢=0. (57a)
Solving equation (51b), we obtain the turbulent kinetic energy:

e .
A2gE = O ¢ 2y(Ri), (58a)
y(Ri) = 3 + 3[1 + 4pRi® 6, %(0)]"* + Rio,; (0) — be; '|Ri],
(58b)
p=p2AAN"4. (58¢)

Equation (58b) can be compared with the standard expression,
equations (42¢c)—(42d),
y(Ri) = 1 + Rio, 10). (58d)

Equation (58b) includes the contributions of both §* and z,,
whereas the standard expression (58d) contains neither. We
must note that in deriving equation (58b) we have assumed
¢, = ¢,, which corresponds to taking ¢, =C, =2 andy, = 3,
see equations (36¢), (44b), and (E13).
Using equation (51a), we define the turbulent Prandtl
number g (Ri) as
R, = —Rig,; '(Ri). (59a)

Since ¢, is always positive, and Ri < 0 for stable stratification,
equation (59a) implies R, > 0 for stable stratification, which
is physically correct. Thus, we derive the turbulent Prandtl
number ¢ (Ri):

o(Ri)o0) = (1 + Ay~ *Ri}l + By"'Ri)™', (59b)
where
A=c;'(bsgnRi—c), B=c;'[bsgnRi—c (1l —p)].
(59¢)
Let us note that without the 6%-contribution, ¢, =0, A = B,

and so
c(Ri)/s(0)=1, (59¢)

which is incorrect for stable stratification since o (Ri) is experi-
mentally known to increase with Ri (Webster 1964).

Finally, from equation (47a) we derive the turbulent vis-
cosity:

v, = (C,A?Sy**(1 + by Y| Ril/c,)™*, (60a)
C,=c¥c 1, (60b)

to be compared with the standard expression, equation (42d),
v, = (C,A?S[1 + Rig; 1(0)]'2, (60c)

to which equation (60a) reduces if ¢ - Oand 7, = .
Finally, the turbulent conductivity y, is obtained from

1. = v, 0, (Ri), (61a)
where v(Ri) and o,(Ri) are given by equation (60a) and (59b).
Equation (61a) must be compared with the standard expres-
sion, equation (42¢),

1 = v.07 10), (61b)
where v, is given by equation (60c).

7.6.1. Stable Stratification: Ri < 0
In Tables 2 and 3 we display the solutions of equation (60c),

called v (standard) and equation {(60a) versus Ri. The units of v,
are (C, A)*S.
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TABLE 2 TABLE 6
v,: EFFECT OF 8 FLUCTUATIONS ONLY %, EFFECT OF 6% FLUCTUATIONS AND
OF T,# 1
—Ri v/(standard) v,
—Ri tandard
0o, 1 1 - Histandard) %
115 SUU 0.92 0.93 [\ 1 1
02......cc.e. 0.82 0.88 Ol........... 0.92 0.63
03, 0.72 0.84 02,0, 0.82 0.30
04............ 0.59 0.82 03............ 0.72 0.12
[V S 0.59 0.02
The inclusion of 6* alone in Table 2 increases the standard recall that physically
turbulent viscosity v,: for example, in terms of the Smago-
rinsky constant C,, at —Ri = 0.4, this amounts to an increase — oT vl
Y : WO = —3 =+ 02 (62a)

of C, of about 18%. In Table 3, the inclusion of both 6% and
1, # T implies a decrease of C,. At —Ri = 0.4, it corresponds to
74%.

The standard model (Table 4) yields o(Ri)/o(0) = 1. In addi-
tion, the reason why there is only one case is because there is
no effect of 7, # 7 on o,. The increase of the ratio o,(Ri)/0,(0) is
in qualitative and quantitative accord with both experimental
data (Webster 1964) and numerical simulations (Gerz, Schu-
mann, & Elghobashi 1989, Fig. 8).

Next, we consider y, given by equations (61a) and (61b).
Using the previous results, we obtain the values presented in
Tables 5 and 6 (the units of , are o, }(0)(C, A)>S). As for y,, we
notice that both 6% and t, # 7 have the effect of lowering y,
versus the standard value: for example, at —Ri = 0.4, the first
effect corresponds to a decrease of C, of about 15%, whereas
the addition of the 7, # 7 effect leads to a decrease of C, about
80%. The decrease of y, due to 8% can be understood when we

TABLE 3
v,: EFFECT OF 6% FLUCTUATIONS AND
OF 1, #1
-Ri v(standard) v
[ OO 1 1
Ol 0.92 0.70
02 . 0.82 043
03, 0.72 0.20
04...oooee. 0.59 0.04
TABLE 4

o (Ri)/6(0) vs. Ri: EQUATION (59b)

~Ri o {Ri)/o {0)
0 1
0. 1.19
02, 1.42
03 i 1.68
04. oo 1.97

TABLE 5

%,: EFFECT OF 8% FLUCTUATIONS

—Ri xd{standard) x
[ 1 1
Ol..o.e.n. 0.92 0.78
02............ 0.82 0.62
03 0.72 0.50
04............ 0.59 042

0z

Since 62 is a positive contribution to a negative convective flux
(8T/dz > 0), 8° acts like a countergradient; namely, we can
write

— oT oT
wl=—(— %) —=-x"— (62b)
oz 0z
with
eff

L <X - (62C)

7.6.2. Unstable Stratification: Ri > 0

In this case, we have only one effect, that of the #° fluctua-
tions since 1, = 1. Using the previous expressions, we obtain
the results in Table 7. Thus, the effect of the 82 fluctuations is to
enhance the value of the turbulent viscosity with respect to the
standard case. Analogously, for y, we derive the results in
Table 8. As before, the inclusion of the 62 fluctuations enhances
the value of y,.

It may be of interest to compare the previous results with
those obtained with one of the empirical expressions often used
in stably stratified turbulence (Pacanowski & Philander 1981;
Smith & Hess 1993; due to the different definition of Ri in our
work, we insert an absolute value),

v, =v{0)1 + «|Ri)™", 0, =00l +afRi]). (62)

The linear dependence on Ri exhibited by the turbulent
Prandtl number, equation (62), is not in agreement with the
data of Gerz et al. (1989), whereas the values of Table 4 are. For

TABLE 7
v,: EFFECT OF 6% FLUCTUATIONS

Ri v{standard) v,
O 1 1
0l..viniais 1.08 1.09
02............ 1.15 L19
03............ 1.22 1.30
04............ 1.28 1.40

TABLE 8

%,: EFFECT OF #* FLUCTUATIONS

Ri z{standard) ba
O.cviiennent 1 1
01l......o.... 1.08 1.26
02.0cciiiiinnt 1.15 1.54
03l 1.22 1.82
04............ 1.28 2.09
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TABLE 9

v, AND ¢, FROM EQUATION (62)
WITHo =5 n=2

—Ri v, o,
O, 1 1
01............ 0.44 L5
02....oei. 0.25 2
03.....enn. 0.16 25
04............ 0.11 3

example, at | Ri| = 0.4, our result is 1.97, the data are around 2,
while equation (62) predicts a value of 3 (Table 9).

8. CONCLUSIONS

Future turbulence research is likely to rely ever more heavily
on large eddy simulations, an approach that has been exploited
by geophysicists (and by the engineering community), who
have made considerable progress in the understanding of the
convective planetary boundary layer. LES techniques are
viewed as “a potent technique of numerical calculation where
measurements are difficult to obtain ” (McWilliams et al. 1991).
There is no reason why this philosophy should not be equally

Vol. 428

successful in astrophysics. Indeed, the LES results of an astro-
physical nature presently available confirm such expectations
even though the SGS models used thus far do not account for
buoyancy, rotation, and stable stratification, whose inclusion is
however essential. Astrophysical LES employ the Smagorinsky
model (or even simpler models), which implies drastic approx-
imations to the complete equations. Indeed, it is the most
stripped-down version of the full model. It would thus seem
logical to begin a “reverse trip ” so as to include incrementally
more physics into the SGS model. The hierarchy of SGS
models we have derived is not the only possible one, however.
Other combinations of the basic ingredients of the full model
can be thought of to highlight a specific feature, e.g., rotation.

Although the hope is that one day the complete model,
equations (22)—(28), will be implemented into the LES codes,
the first logical candidates are the SM, followed by the AM,
and finally by the complete model, CM. In all cases, the dissi-
pation length scale [, is given by equations (27).

The author would like to express his thanks to Dr. Peter Fox
for his careful reading of the manuscript and for several useful
suggestions.

APPENDIX A
Al. THE BASIC EQUATIONS

The basic equations describing a compressible fluid of total density p, pressure p, temperature T, velocity v,, kinematic viscosity v,
and thermal conductivity K are given by (d/dt = /0t + v;3/0x):
. d op . . 0? -
Pavi= _a_)%_gip+Vpa_ﬁvi—2/’€iijjvk, (A1)
. dT dp 627~‘+ o2 N A +e 30 A2
_— 0.0 o s
K 0x; 0x; 0 \ox, P (A2)

7.

Pooas “a ™" a2

where ¢, pQ is the gradient of an external flux, u = pv, €;; is the antisymmetric tensor, and Q is the angular velocity. In addition, we
assume a perfect gas law p = RpT. First, we split the variables into an average and a fluctuating part

p=P+p, T=T+60, p=p+p, v,=U++u, (A3)
where P, T, p, and U, represent the average fields; the fluctuating components have zero average
p=0=p =i=0. (A4)
Assuming further that P = RpT, and neglecting second-order quantities, we derive for p’ the relation
o p 1
—= —af+ =, =—.
. P a= (A5)

In the standard Boussinesq approximation (Paper I, eq. [21b]), the second term with the fluctuating pressure p/P is absent. The
physical interpretation of the terms arising from its inclusion will be discussed shortly. Inserting equations (A3)—(A5) into equations
(A1)~(A2), and following the procedures outlined in Paper I, we obtain the dynamical equations for the mean and fluctuating
variables (D/Dt = 6/t + U,0/0x;, 4; = g;, g; = 0,0, g; for any variable a, a; ; = da,/0x):

PY (041 8)_ Lam o Ny~ 2e,0,U A6
Dr g: e o, uu; 1 €l U, (A6)
Du; oU, op o %y, .
D = _“fE_R_E(“‘“f_“i“f' + 4,0+ va_x?+ N5 — 263 Q;u (A7)
i J J
DT T 0 — € 1 oP
B?_Xa_ﬁ_a;uj0+c_p+c_pUja_)cj+Q+N3’ (A8)
D6 oT 0 S— 08 v —
i _ujg_a(uje_ujg)'*' X@-*_c_ [(“i,j)2 _(ui,j)z] +N,, (A9)
J J J p
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where we have taken the v — 0 limit and where ¢ is the dissipation rate of kinetic energy. The non-Boussinesq terms’ Ns are given by
(Paper 11, eqs. [ 28]-[33])

op p 6p
i = — 9 £ &
pN' o o, P o, (A10)
. 1 0P r P dp 1 6p 0p
No= (g +19P oz L _ 11
2 <g‘+paxi>°‘ *pox ( ox, )+ < ox, Pox, (AL
T op — __\ 0P op 1 op
pe, Ny =U;A; + u; ﬁ_xj + (aeuj ~p pu,-) ﬁ_xj + abu; a_x, —p P 6—x} , (A12)
with
dp 1 dp
Ai=of— ——~p— Al3
1=, TP oy, (A13)
6P 6 opP
c, PN, =U;A; ~l~ua — (py; —')+[a(0u—0u,)— (pui—ﬁ)]a
Xj i
op op 1 ap 6p
N LS Y 4 B £ _
+ a<u,6 ox, u; ax,-) < u;p ox, wp ox.)’
(A14)
with
op p opP op _dp 1 p op
Al=——=—uabf}]— 0 ——0—)—-=|lp——-p—1]. Al5
tTox; (P x )6x,- + cx( 0x; ox;) P P Ox; P ox; (AL5)
A2. SECOND-ORDER MOMENTS
Following the procedure outlined in Papers I-11, we derive the following results:
D 0 __orT U, S
o b 9+6 jOuu = —(u, ’6 +u; 06—;>+1 6% — I + 1, — 2€,3Qu,6 + C;, (A16)
where the pressure correlation term is defined as
0
m=6"L (A7)
Ox;
and the new term C, is defined by
ciENi20+pN4ui+cﬁﬁ (A18)
14
with (Paper I, eq. [37f])
he=1"'q"u;. (A19)
Next, consider the equation for the temperature variance 62. In lieu of Paper 1, equation (35a), we have
T p— — T %6
bt T Ox; “ " 0x; T o ox? ot (A20)
where
1, — 1
~C'=N,0+—€b (A21)
2 <,
with (Paper I, eq. [38¢])
b =1"14%0. (A22)
Next, consider the equation for the Reynolds stress u;u;. We derive
D___ 9 __ _ i —0U; z__
Htu,.uj+5x—ku,~uju,(=—(u,.u,,a—x"+u,uka >+iu9+/1u0 IT;; +v6x ug; —€;— 2+ Cy; (A23)
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where we have defined
op dp ; - _
H”:u'6_+ r C;j=Nyu;+ Nyu,, Q; = (€ U1y, + €5 U 1) (A24a)
06'\? I
€ = X(E) R 2 U = €. {A24b)
J.
Even though the tensor ¢;; is usually taken to be diagonal, we prefer to use a slightly more general expression
€;=%€d,; + (1 — F*)ee b, (A25)
where the definition of F is given in Appendix E. The equation for the turbulent kinetic energy e = %F, where g% = u; u,, is then
—_— — = =t —+ Au, 8 — =11, — ~C,: .
Dt axl 2 q ul ul uj axj + lul 2 113 € + 2 113 (A26)

A3. PRESSURE-STRAIN CORRELATIONS

For the tensor I1;; there have been many proposals which have been recently reviewed by Shih & Shabbir (1992), whose
formulation we follow:

4 J _ 0 __
I, = 2c4r;1bij + (1 — Bs)B;; — 3 eS;—a X —ay, Z5 + IT,{NL) + ™ pu; + &— pu; , (A27a)
J i

M(NL) = —e 'TI% + 4, AL . (A27b)

The first term is known as the Rotta (1951) term. The timescale t,, which in principle should be determined from the integral of a
Green function derived from second-order closure (Herring 1987), is usually taken to be 2e/e. However, in the case of stably
stratified turbulence, this is no longer true. Weinstock (1978a, b) and Canuto et al. (1993) have suggested that a more physical model
requires that

=1l +h|NPD)™L,  h=0045, (A27¢)

where 6 = O for unstable stratification and ¢ = 1 for stable stratification; N is the Brunt-Vaisala frequency, equation (27¢).
The nonlinear contribution ITj} and A¥; are given by

SI7 = biSy + b% Su — 2b4;byy; Siom — 3bi;bim Sim + bA R + b3 RE (A28)

A= —3(1 + 4B5)AY + 31 — 3B)CH + (B, + 3B5)D% + Bo Ef; + e (s — l)bije_uk + (e85 bijbkpo_up > (A29)
where (our b;; is not the same as the bf;- of Shih & Lumley: b;; = 2ebfF

b; = 5171 - %eéij > bizj =by by, T = 2efe, (A30)

B;; = }vim + lj@ - %&jlk“k_‘g P (A31)

Ty = Suby; + Suby — 38, Subu (A32)

Z% = Riby; + Ry by — 36,;RY by, (A33)

2SU= Ui,j+ Uj,l' s Rfj=a),-j—€,-j,‘Qk s 2(0U= Ui,j_ Uj,i’ (A34)

2eAf} = biko_uj + bjkg_ul - %61, bpk'ng 5 (A35)

2eCl; = (0 bj, + 85 by, — 30,;byu, 0, (A36)

4e’Df; = [bybj, + bjxbiy — B bjm + 04 bim)bmp]a;_é ) (A37)

4e’El; = (bim;j—e + bjm 4,00, — (85 bjm + S5 bim)bmpm > (A38)

Ak=0. (A39)

Putting together equations (23), (26), and (27), we obtain the dynamic equation for the tensor b;;

1
eS;— (1 —o)Z; — (1 —a)Z; —I;{NL) + C;; — = 6;;Cys. (A40a)

D _ 8
Dt b+ Dyb;) = —2ck¥t,'b; + Bs B; — 3

15

where

0 [ S _ - 2.
Dby = 6_xk [(uiuj =3 6ijq2uk> + <6,-k pu; + 6, pu; — 3 5ijpuk)] , (A40b)

Zy=bywy + byog — 2 — o)1 — a)) " Mejubu + €abi); . (Ad40¢)
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The constants are discussed in Appendix E. Analogously,

Mm=9 g—i =fi7, U0 + y,4,6% — % oc3<S,-k + g R;',;)m + IYNL) + 6% pO—(v+7p) j—i g—:"; , (A41)
where
I}(NL) = 4, Y,; + e~ (S + R%)Notg BY; — a6 by;0uy) (A42a)
4eY;; = 29,6%b;; + 43 0u; Ou; + 2y, *(by u; Ouy + by 0w, 0u) + s € by by, 67, (A42b)
Bl = by Bu; + by Ou; — 35,;b,,,0u,, . (A42c¢)
If we neglect the nonlinear terms by taking
V2=V3=74=y5=0, (A43)

we recover equations (43a) (Paper I), if we further call f; = 2¢¢ and y; = ¢,. Inserting equation (A41) into equation (A16) above, we
finally obtain the equation for u; 6, namely,

D — 0T —. 98U, R —
D u,0 + Du;0) = —<u,.uj (3_xj +u;0 a_x,) —fit, w0 + (1 —y A, 0%
3 5 \—s — , 1 P —
+—ogl S+ 5 RY Ju;0 — 26,1, 0Q, —TENLY + = (v + x) 75 4,0 + C;, (A45a)
4 3 2 0x;
J— 0 — —
D (0) = == @ty + 6,50) (A45b)
J
APPENDIX B

THE C TERMS

First, let us consider C°. Using the definition, equation (A21), and Paper I equation (38b), we derive (for ease of notation, we take
p=1

1 o —5 , —3 0P 1_.
chC —(uj9+auj0)axj+2l'l,-i+60. (B1)
With the aid of equation (44f) (Paper I):
Y = —3co77 1470, (B2)
and of the closure €8 = ¢~ 1426, we finally obtain
e, = L (1= 3e) g% 3
36 C =0+ aw;0%) —— + (1 = 3co)t ™70, (B3)
J
where the pressure gradient must be obtained from equation (A6).
We shall write equation (B3) as
1 s —= OP .
= ¢,C’ = u;0 —— + third-order moments . (B4)
2 0x;
From equation (A6) in the stationary case and to the lowest order, we derive
oP
6_x,~ = —g; — 263, Uy, (BS)
so that to the lowest order
3C° = —¢p ‘u; 0(g; + 26,3 Q;U,) . (B6)

The first term serves to renormalize the first term on the right-hand side of equation (21) via the introduction of the adiabatic
temperature gradient, a fact that we have used in going from equation (35) to equation (36a).
Next, consider C;;, defined in equation (A24). Using Paper I, equations (38b) and (44f), one obtains

1 — 1_ _——\dJP .=
3 Cy= —ag,0u; + (P pu; — a()ui) o, + 3¢cot” lag?l, B7)
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where

pi; = —CpqPu; , (B8)
with the gradient of the pressure given by equation (A6) or, approximately, by equation (BS) above. To the lowest order, only
rotation contributes to C;;.
Finally, let us consider C; (eq. [A18]). Using Paper I, equations {39b) and (45), we derive

__ 0P — oP .
Ci=c, 'wu;— — a02<gi + —) + third-order terms , (B9)
Ox; Ox;
where
: | e N -1, 2 - -1 2 p
third-order terms = | — p0 + ¢, "abu;u; | —— — 2cgar” u;0° —¢y,04,0° + ¢, Y Tt u gt +wu;— |, (B10)
P 0x; Ox;

where the last term in equation (B10) must be computed using Paper I, equations (37b) and (44e). To the lowest order given by
equation (B5) above, equation (B9) becomes

Ci= —c, 'g;uu;, (B11)

which serves to renormalize the first term in equation (32) by introducing the adiabatic temperature gradient, equation (36¢).

APPENDIX C
THE DISSIPATION RATES € AND ¢,

C1. UNSTABLE STRATIFICATION

An equation for € was first proposed by Davidov (1961). With the addition of buoyancy, its more popular form reads (Zeman &
Lumley 1976; Lumley 1978; Launder 1990; Speziale, Gatski, & Sarkar 1992)

2
D%H%@:CQZP—CQ%. (1)
P means total production,
P=P,+ P, . (C2)
where the buoyancy and shear contributions are defined as
buoyancy: P, = 4, 0u; , (C3)
shear: P, = —b;§;; . (C4)
The ratio
&=—%=gg ()

is the flux Richardson number.
If one adopts a down-gradient-like approximation, namely,

(C6)

where k, is a turbulent diffusivity, equation (C1) takes its standard form. Since k, has dimensions of wl, dimensional analysis applied
to equation (C1) yields

€~ et cn
Introducing the timescale (A30)
T = 2e/e, (C8)
equation {C1) can be transformed into an equation for 7:
D P 1
F: +tHe 'Dje—e D) =2C, - )= 2AC, —1)—+-Cy, (C9)
€ €
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where D means diffusion, i.e.,

a b7}
Dre =—— (eu) Dye=——(eu; + puy) . (C10)
0x; Ox;
The equation for €, is given by (Zeman & Lumley 1979)
D a _ 11 i _— 0T
Drce T 6_x, (€ou) = —b €1, 1<1 +7 f) + by(er®) " Y (wh)? — by1, ‘wh P Ve (C11)
where the relations analogous to equations (C5) and (C6) are
— a
€gw=—K,—¢€,, (C12)
0z
—— |( 367
K, = —92w/<—) . (C13)
0z
It must be noted that some authors (e.g., Andre, Lacarrere, & Traore 1982) use much simpler relations, namely,
e3? 1 =e? 1 — _
€= Tk €@=§c002 ) =5690€e L, (C14)
In the LES + SGS approach, one usually identifies
IL=c 'A, (C15)
where A is the smallest resolved scale. The constant c, is determined by considering that the subgrid kinetic energy is defined as
e= J E(k)dk . (C1¢)
/A
If one assumes that the subgrid scales are inertial (Ko is the Kolmogorov constant),
E(k) = Koe*3k =313, (C17)
substitution of equation (C17) into equation (C16) yields equation (C13) with
2 3/2
= ) C18
.=r{5%) c19
Analogously, we have for the temperature field
6 = J G(k)dk , (C19)
/A
G(k) = Ba ey 13k 53, (C20)
so that we recover the second equation of (C14) with
1 Ko
Ze = — C21
2 Co Ce Ba s ( )

where Ba is the Batchelor constant (Monin & Yaglom 1971, 1975).
Expression (C13) with equations (15), (18), and (21) have been successfully applied in LES calculations. However, these relations
cease to be correct in the presence of stable stratification.

C2. STABLE STRATIFICATION, GRAVITY WAVES

Stably stratified turbulence, like that encountered in the overshooting regions in stellar interiors, cannot be described by equation
(C13) because a new phenomenon comes into play, negative buoyancy, which forces the eddies to work against gravity and lose
kinetic energy which goes to feed density fluctuations (gravity waves). This means that the basic ingredients (eqs. [C17] and [C20])
are no longer valid since the SGS eddies are no longer inertial.

The first to present a model to account for the effects of stable stratification were Bolgiano (1959, 1962), Shur (1962), and Lumley
(1964). Since there are difficulties with Bolgiano’s model (for a review, see Phillips 1965), one usually considers Lumley’s theory,
which however predicts a unique k=3 power law for the buoyancy subrange. While atmospheric and oceanographic data (Gargett et
al. 1981; Gargett 1985, 1989, 1990; Weinstock 1978a, b; 1985a, b; Dalaudier & Sidi 1987) are in qualitative agreement with this
prediction, they actually exhibit spectral indices ranging from —2.5 to —3. Lumley’s theory was critically analyzed by Weinstock
(1978a, b, 1980, 1985a, b, 1990) who pointed out, among other things, that a physically complete treatment of a stably stratified flow
must explicitly account for the gravity waves that ultimately store the kinetic energy lost by the eddies.
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A further complication comes from the fact that, while negative buoyancy (a sink) always makes the eddies lose a fraction of their
energy, shear (a source) acts to restore it, and thus, depending on the value of the Richardson number R +» the model may behave
differently. At present, there are three models.

Small-to-moderate buoyancy—R, < 3. DeardorfT (1980) suggested that in this case one can still use the Smagorinsky model (eq.
[597) provided the length scale [ is taken to be

1/2

I=min (A, L), 1,=076 —e-N— , (C22)

which implies that stable stratification decreases the master length.
Strong buoyancy, no shear—R; = co. In this case, Canuto & Minotti (1993) have derived the following expression for ,

I =A exp (bx?), (C23a)

x=(—N¥HH2Ae 12 b Ko%?2 | (C23b)

= 3572

which implies that stable stratification increases the master length (with respect to A).
Arbitrary values of R, —Recently, Cheng & Canuto (1993) have derived a general expression for I. The result is

l.=c¢7', YA=T(Fr,R;), ¢ =const., (C24a)
where
ell? Au,0 oT (0T
Fr=5_, R,=Z24 N? = —ag| ST (2T .
=av BThsy ““"[axi (ax)ad] (C245)

Fr is the Froude number, R is the flux Richardson number, and N is the Brunt-Vaisala frequency (N2 > 0 for unstable stratification
and N? < Ofor stable stratification); A; = g;a, g; = (0, 0, g), and a is the volume expansion coefficient. A can be considered the limit of
Lin the neutral and shearless case.

The function I is given by (Cheng & Canuto 1993)

R, < R,.:
F=[1+aFr 2(1 +bFr #3)~11732 3nfa=2A-1), b=012]4A—1+ 347142 (C25)
R;> R, :
I'=[1+ @4/57%)4 Fr 2]°, c=3A"t-1). (C26)
In both expressions A is defined as
A=1+G"?/4Ko**[(R,/R,) — 1] . (C27)
Cheng & Canuto (1993) have also shown how the expression for ! does reproduce the empirical expressions suggested by Deardorff

(1980) and Hunt et al. (1988).

APPENDIX D
THIRD-ORDER MOMENTS

The equations for the third-order moments are taken from Paper I. We have

D \ __ 0 __ — 2 =
(—it + tgl)u,. Uty = —(;u;u, Uy + perm.) — (u,.u, T Lt perm.) + (1 — ¢y X4; Oujuy, + perm.) — 2Q,;, — ™ (6474%u; + perm)),
1

DY
D i \V—s —— 0 — 8 - — 0 __
E+r3 w10 = wusu B — (w;w OU; ¢ + u;u, OU, ) — uiukaeuj—%-ujuka—x“ u,-+0u,,a—xku,~uj
2 T, 1. s T35 T
+§c“5ijlk9 U+ T 7€, 055970 + (1 — ¢q 1 A 0%u; + 4;0%u) — 2A,;, (D2)
D ot o\ . TP o= 0 o B_—— 0 = 7
Ft+t3 + 215 ' Ju; 6 =29u,-ujﬂj—9u,-U,-_j—ZGuja—x.Oui+(l—c“)/l,-G —uiujag — 26,3 Q;u, 0%, (D3)
J J
D Cio -1 \53 o —_ 6 v 62 o3
— 4 10 = B.— L - D4
(Dt+ s T3 )0 36%u; B; — 30u; aij +X6x,2 0°, (D4)
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where f; has been defined in the text, equation (36¢), and

U oU; 2e T 92
ij= A T=—, T3=5> Tg ="
M ox; € 37 2¢q T ¢,
Aij = (€ U; w0+ €y Uy Uy 0Q,, Qi = (€itm Uy, + perm.)Q, , ¢y = (2/3Xcg + 3¢9 — ¢40) - (DS5)
In the stationary case, it has been customary for many years to approximate equations (D1)—(D3) with
- - 0 _—_ Y, Jp— > e 0 =
u,-ujuk—>—r3uku,a—>quiuj, uiuj9—>—r3ujuka—>6k0u,-, u; 0% > —15(1 + 215314 )uiuja—xj8 . (D6)
If the degree of anisotropy is assumed to be small,
b, =uu; — %ed;~0, (D7)
one further has
wu i~ —Av, — u; u; wu, 0> —Av, — Ou; u,0* > —By i—(;i (D8)
e Bhad 4 taxklj’ i%j taxj i i taxi ’

with 3cgc, A = 2and B = A(l + 21571, !); the turbulent viscosity v, is given by equation (44a) with X, = 0. Equations (D6) and (D8)
represent the down-gradient, diffusive approximation to the third-order moments.
As discussed in Paper I, equations {D8) lead to incorrect results: for example, planetary boundary layer data show that
— 0 —
w2 >0 and —w?>0, (D9)
oz
which contradict the first of equation (D8). Recently, the system (D1)—-(D4) has been inverted exactly in the case in which there is no
mean flow and the variables depend only on z (Canuto et al. 1993). The principal result is that all third-order moments exhibit a
universal structure: they all are a linear combination of the gradients of all the second-order moments. For example,
0 — 0 — 0 — 0 —
— — — — D10
Dxazw +Dzazq +D362w9+D4az , (D10)

H

?w

where the turbulent diffusivities D, have the general structure
D ~av, + bwo , (D11)

indicating that the turbulent diffusivities are contributed not only by the mechanical part v, ~ wl, but also by buoyancy.
The approximations

i) 7}
g .,9
ox; 0z’

can be made in an ensemble-average approach, but not in the context of an LES where all the components of U; and all the space
dependence must be kept. Infact U; does not represent an external field but the large scales. This makes the inversion of equations
(D1)—(D4) a harder task, even with the help of symbolic algebra. Until that is done, we suggest the use of a temporary intermediate
solution between equation (D6) and (D10). The idea is to begin with the down-gradient approximation as a zero-order solution
(n = 0) to be substituted back into all the third-order moments appearing on the right-hand sides of equations (D1)—(D4). This will
provide, without the need of a matrix inversion, a new set of third-order moments

wut,  wu0, 0%, (D13)

The calculation cannot, however, be stopped at this stage. In fact, one can notice that at this level of approximation, one would not
recover all the terms appearing in equation (D10): for example, the first third-order moment in equation (D13) would not contain
the last term in equation (D10), namely, the gradient of the temperature variance, as one observes by inspecting the components of
the zero-order expression for u; u; 6. On the other hand, if one goes a step further, such a dependence is recovered.

Formally, the procedure can be written as follows: define

U, =0,

13

(D12)

Ay =Tut,, By=0uu,, C=ub, D=6. (D14)
Then we have from equation (D1)

ALt =AY — 1a(Aly Uy + perm) + (1 — ¢1)13(4; By + perm.) — ey, A, + permu)ts @ — (1/3cg)0y; Ay + perm.),  (DLS)
where the zeroth-order approximations (which include the down-gradient as a subcase) are defined as

0
—t3 AN = Uy S, Wit + perm. , (D16)
1
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—r;IBgsma%_u,+u,.uka%H_m.+e_wa—i—km, (D17)
-1 ~1\0 — G, 00— — 0 =
=15 (1 + 21315 C] = 26u; 6_x] Bu; + u;u; 6_x1 0, (D18)
—51—°r;11)°s3o_uji§'. (D19)
Cg Ox;
Analogously equation (D2) becomes, with ¢, = 0,
Byt =B+ Buts Afu — t3(BR U + B Uy y) + 3611 6,513 M Cr + (1 — ¢44)13(4,C) + 4;C) — 2ew By + € Byt . (D20)
Equation (D3) becomes
Ci*'=CP + T[2B;B;; — CiU, j+ (1 — ¢, )4, D" — 2,3, Q,CH (D21)
where
T =14(1 + 214/19) " . (D22)
Finally, equation (D4) becomes
D"*t = D% + (3cg/cy0)t3 Bi CT . (D23)
The remaining third-order moments are determined by the relations
pu; = —Clq*u,, pbi=—Cq%0. (D24)
APPENDIX E

1. Equations (23)-(26):
ct=cs+ (1 —F'")y,t71,  ¢,=1+622F*(1-F)¥, f,=15,
ag =6as, Ba,=22-Tas), az=%, =75, 10as=1+%F"2, ai=1%,
F =1+ I + 27111 . (E1)

The invariants IT and III are defined below (eq [E8]). For two-dimensional turbulence F ~ 0.
2. Equations (23)—(26): constants entering the third-order moments (Eq. A46] and Appendix D)

=8, =4, ¢1=3%, ¢=0, Cr=C=4%. (E2)

3. Equations (23)—(26): the functions y entering equations (26) and the nonlinear term Y, equation (42) (Shih & Shabbir 1992):
9y, = 6r* — 10 — Bs(r> — 1) '[18(r2 + Lyrb + r¥(7 — 15r2) + 3611 — 107, (E3)
9(r* — DIy, = r’GII + 14) — (311 + 2) — Zr* — B,[r2(1211 + 20) + 1081Irb + 108112 — 211T — 5 — 15r%(1 + 3II)], (E4)
y3= —1+ 1B — )7 H12rb — 5% + 1211 — 1), (ES)
va=—3Bs,  6llys=7+ 53611 — 10), (E6)

where

2r® = Gu, 0uf6%)™',  2rb = (6%) Gu,Bu;b,;, (E7)
—8¢’I = b;;b,;, 24¢°111 = b; by by, . (E8)

Using data from a buoyant plume experiment, Shih & Shabbir (1992) have determined that the value of 85 is approximately 0.6,
which would correspond to ¢5 =1 — 5 = 0.4, a value close to 0.3 suggested in Paper I, equation (44d). In the same work, the
authors have also shown that y, is almost constant (~0.42), while y,, y3, 74, and y5 are all negative, with values ranging as follows:

191 < |y,] <282, 028<|y5]<07, 081 <]|y,] <276, 095<]|ys]|<3.15. (E9)

4. Equations (23)—(26): the functions B, §,, and f, entering equation (25) and the nonlinear term'A¥; (eq. [A29]) (Shih & Shabbir
1992), are given by

BS(611 — 10r2 — 361Irb) = — (1211 + 7)r? (E10)
g, =—%¢+5—-1), (E1D)
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_ﬂ9 = Bs + ﬁ7 . (E12)

5. Equations (27a) and (27b):

2\ 1 Ko
¢ = n<3 Ko) , 3% =C g Ko =1.6 +0.02, Ba=1341+002. (E13)
The values of Ko and Ba are taken from Andreas (1987).
6. Appendix C: the constants
C,=144, C,=183, (E14)
b, =3, b, =130, by =097. (E15)
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